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We reexamine the open shell restricted Har t ree-Fock theory and develop 
Fock-like operators that are quite general and easy to implement on a com- 
puter. We present a table of  'vector coupling coefficients' that define this 
operator  for most of  the cases t ha t commonly  arise. We compare the form of 
this operator  with that suggested by others, a n d  discuss the orbitals obtained 
by this procedure with respect to the generalised Brillouin's theorem, and the 
orbital energies with respect to Koopmans '  approximation. 
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1. Introduction 

With the introduction of  inexpensive computing it has become possible for nearly 
every chemist to do large scale molecular orbital calculations in their own lab. 
Consequently, these calculations are now being used extensively, both as an aid 
to interpreting experimental results and as a predictive tool. For closed-shell 
molecules these calculations have been of the Restricted Har t ree-Fock Self 
Consistent Field (RHF-SCF) type [1, 2] where the theory is well developed and 
the procedures are standardized. Unfortunately, this method, in its simplest form, 
can only be applied to closed-shell systems. Since chemists are also interested in 
excited states, ions, radicals, and open-shell transition metal complexes, there is 
a renewed interest in molecular orbital methods applicable to these systems. 

Open-shell calculations have generally been of  the Unrestricted Har t ree-Fock 
(UHF)  type [3], where the procedures are reasonably standardized [4]. However, 
for a given number  of  open-shell orbitals, the U H F  method is appropriate  only 
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for the state of highest multiplicity, for only here can  the UHF wavefunction 
approximate a proper spin eigenfunction. States of  lower multiplicity are often 
badly contaminated by unwanted spin components. Although various schemes 
have been designed to project out proper spin states [5, 6], or to annihilate near 
lying spi n components [7-9], these schemes are either disproportionately expen- 
sive in terms of computing time, or not accurate enough to be of  general value. 
A powerful advantage of UHF schemes is their amenability to the inclusion of 
correlation through perturbative correction [ 10-12], though the improvements to 
UHF  wavefunctions Using configur~ition interaction (CI) methods is difficult. 

Since Roothaan's paper on restricted open-shell Fock operators (ROHF) first 
appeared in 1960 [13], there have been a large number of methods proposed to 
address the problem of  open-shell molecules at the SCF level. All ROHF methods 
have the advantage of easy interpretability within the independent particle 
approximation since they are restricted to be eigenfunctions of S 2. Although such 
wavefunctions are difficult to improve using perturbation theory, they are easily 
correlated through standard CI techniques [14]. 

ROHF methods can be considered specific cases of the more general Multi- 
Configuration Self Consistent Field (MCSCF) methods. In each case, the total 
wavefunction is constructed from a linear combination of Slater determinants. 
In R OHF  calculations, the coefficients of the Slater determinants are chosen to 
represent a particular spin state and /or  symmetry. In MCSCF calculations, these 
coefficients are allowed to freely vary, and only their relative phasing must be 
specified. Although of  greater general utility, MCSCF methods consume a great 
deal of computer time through cycling, integral transformations, etc., merely to 
determine coefficients that are fixed by spin.symmetry. 

In this paper we reexamine the ROHF problem, and develop Fock-like operators 
that are quite general and easy to implement on a computer. The method handles 
degenerate situations in a fashion similar to that suggested by others [15-20], 
combined with a projection operator technique similar to that suggested by 
Davidson [21]. The method described below has been in use for some time within 
the INDO semi-empirical framework [9, 22-24] although it is certainly not limited 
to this type Hamiltonian. We have tried to make this development both as general 
and as complete as possible since we have found it difficult to extract this 
information from any one source. Veillard has given a clear description of a 
related ROHF method [25] but the technique described is not of the same general 
utility as that which we describe below. Interested readers are also encouraged 
to examine the work of  Carbo and Riera [19c] and the references therein. 

In the next section we develop the general theory in term of Fock-like operators 
and projectors. Section 3 describes a single operator construction, and compares 
this development with those of others; Sect. 4 presents the matrix formulation 
of these operators and, along with Sect. 5, describes the detailed construction of 
the operator for a specific case. Section 6 shows the connection ~between the 
ROHF operator and the the generalized Brillouin conditions [26], and Sect. 7 
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gives the relationship between the orbital eigenvalues and the frozen orbital 
approximation for ionization processes (Koopmans' approximation). 

2. General theory 

For a set of orthonormal spin orbitals {6k}, the energy of any single determinant, 
@ can be written as 

E =(OtHIO) 

E (ilh]i)n~ +�89 X (/Jl [ij)n~nj, (1) 
i i,j 

where (0[ 0) = 1 and the spin orbitals have occupancies of n~ = 0 or 1. 

The two electron integrals have the following form. 

(/j[ I/j) = (~j ] ~/) - (/j Iji) (2a) 

( ij l kl) = ( ik Ijl) 

= f dr( l )  dz(2)q~*(1)6*(2)r;d6k(1)61(2). (2b) 

In general for a linear combination of determinants constructed from this set of 
orbitals: 

~Lt = E  dAOA (3) 
A 

E = ( ~ [ H [ ~ ) =  x EAd2A+ X dAdBEAB, (4) 
A A O B  

with EA given in Eq. (1) and EA~ =(OAIHIOB). 
There are three cases that must be considered in calculating EAB. In the first 
case, 0A and 0~ differ only in 16,) and 16j), and have the remaining {16k)} in 
common. The determinants 0A and 0n are thus related by a single excitation and 

EAB = [ (ilhlj)+ ~k (iklljk) l Oj" (4a) 

In the second case, OA and OB differ only in spin orbitals [6i), [6j} and 16k), [61) 
respectively; OA and 0~ are related by double excitations and 

E A B  ---- ( / J I  [kl)O~'. (4b) 

In the third case, OA and 0B differ by more than two spin orbitals and EAB = O. 
The factor 0 is the phase of OB after arranging the spin orbitals of 0B to have 
maximum coincidence with OA. 

It is possible to write E in compact form as 

E = Tr pH = ~ "y~(ilh)} +�89 ~, rok~(ijl [kl}, (5) 



350 W. D. E d w a r d s  and  M. C. Ze rne r  

where 3'o and Fqk I a r e  the density matrices over spin orbitals: 

3",, = E d2A(~PAlaT a, I4'A) (6a) 
A 

3"u = E d2A(OAla +ajlOA) + E dAdB(OB]a + ajlOA)O~ (6b) 
A A < B  

and 

r, k, = E d~(OAla +a]a,aklOA)+ E dads(~PBla+a+ alak]~Pa > 0~', (6c) 
A A < B  

where aj and a~ are the usual Fermion annihilation and creation operators (27). 
The operator + moves an a i aj electron from the occupied orbital ~bj to the empty 
orbital qSi. If  orbital ~bj is empty or if orbital ~b, is doubly occupied, the operator 
gives zero. Note that in Eq. (6b), the second summation is in fact restricted to 
run over those determinants in which 0a and 0n differ only in orbitals [&~) and 
IqS~) (single excitations). Similarly Eq. (6c) is restricted to those determinants in 
which ~]a and ~bB differ only in the sets [~b~), [~bfl, and [~bk), I~bt) (double excitations). 

Equation (5) is general, and is the basis for multiconfiguration methods such as 
MC-SCF in which the {da} and {10~)} are varied simultaneously for an energy 
minimum, or for natural orbital methods in which 3'0 is made diagonal. 

We are interested here in examining general Hartree Fock like methods in which 
the energy can be written as 

E = Y. 3"~i(i]hli)+ �89 ~ Foo(U ] [/j) (7) 

that is, of the form of Eq. (1). This generalization of Eq. (1) will include all 
possible spin adapted states that can be generated from a given electronic 
configuration, and will include most of the spatially degenerate situations met 
in considerating the highly symmetric transition metal complexes. In situations 
without spatial degeneracies the method that we discuss is similar but not 
equivalent to that of Davidson [21]. The general approach we take is similar to 
that of Hirao [17]. Further generalizations of Eq. (7) with coefficients fixed by 
symmetry have been developed [28], but the resulting equations are considerably 
more difficult to solve than those we present below. 

We wish to minimize the energy of Eq. (7) with respect to orbital changes and 
subject to the orthonormality constraint (&~l~bj)= ~j under which the energy 
expression is valid. We vary the functional 

E ' =  E - 2  • Ao(~b~ I~bfl (8) 
i,j 

where A~ are the Lagrange constraints. This leads to 

~E'= 2 Z [(,s6,lF'16,) + (6,lF'la6,)] 
i 

- 2 E Ao[(84', I&fl  + (4~, I &~j)] = 0. (9a) 
i , j  
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The appropriate form of the operator F i will be derived later. Since [6~bi) is 
arbitrary, one obtains from (9a) the Euler-Lagrange equations of the familiar form 

Fil~b = Y. [~j)Zj, (9b) 
J 

(~b,[F' = E (eSj[Z0. (9c) 
J 

Equations (9b) and (9c) must b e  solved simultaneously to ensure a proper  
variational procedure, easily seen by setting (6~bi I = (i899~ I in Eq. (9a). These two 
equations will become identical if and only if: 

Aj, = A*. (10) 

From (9b) and (9c) 

Aj, = (~bjlF'l~b,) = (~bj]FJl~b,) (11) 

and 

(4, j l f ' -  fJI6,)-- 0. (12) 

Closed-shell Hartree Fock procedures usually 0nly consider Eq. (gb). Since there 
is only one Fock operator, F ~= F j = F, the condition expressed in Eq. (12) is 
automatically satisfied. If more than one Fock operator is required, Eq. (12) must 
be imposed as a constraint. 

Although Eq. (9b) suggests that each operator is associated with only one 
spin orbital, this restriction can be relaxed. T o  express this we introduce the 
concept of  a shell of orbitals, designated by a superscript, {I ~b ~)}, all of  which are 
associated with a single operator F ". Equation (9b) becomes 

F~l~b~) = Y, ;tj, l~bJ')+ Y, E Aki]~b~) (13) 
jE,t~ /v~/s kc P  

F " -  E E Ak,]4k)(~b, ~b,)= E Aj,[62)- (14) 
v# t x  k ~ v  .I j~p~ 

In the representation in which Aj~ has been diagonalized to w~ for subshell/~, Eq. 
(14) takes on the appearance of an eigenvalue problem, however to~ is not an 
orbital energy. In Sect. 5 we will show that F ~ in Eq. (14) has the structure 
F ~= n~(h + G - Q ~ )  where h is the usual one electron operator, G the usual 
two electron operator, and Q~ a two electron operator characteristic of shell/~. 
The spatial orbitals in each shell /~ all have the same occupancy, n ~ where 
0 -  ~ n ~ -~ 2. For this reason the usual orbital energies e~ are given by 

ei=oA/n '~, ielz. (15) 

In order to ensure the constraint expressed in Eq. (12), we can write Eq. (11) as: 

Aki = A""(q~lF~]~b~)+ (1 -M'~)(q~ ~,]F~l~b~'), (16) 
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where the arbitrary constants A "~ ~ 0. Incorporating Eq. (16), into Eq. (14) gives: 

{ F  ~ -  Y~ ~ [~b~)(~b~[F~[~b/~)(~b~[}[~b~')=to/[~b~), (17a) 
v~p .  k ~  

where F t'~ = At'~F ~ + (1 - A ~ ) F C  (17b) 

Note that the new Fock-like operator F "~ is not symmetric in /zu. Introducing 
the projection operators defined below into Eq. (17a) gives 

We note that the operator in Eq. (17c) when operating on ]~b~) has the same 
matrix elements as the simpler operator 

namely (~b)~[FJ'l~b~ ") = wi3 U and 

= (~ ~IF~ 16~)-  A ~ ( 6  ~,IF~I ~,~)-  (1 - A ~ ) ( ~  ~lv~ I ~ ~> = 0 

satisfying the condition of defining the set of one electron operators. 

The operator of  Eq. (17d) is not Hermitian, and so for convenience we define 
R ~ as 

R ~ =- F ~ - ~ [ P ~ F ~ + F ~ P  ~] (17e) 

g~lq~)  = wi[~) .  (17f) 

The additional term F " ~ P  ~ when operating of I t~)  adds zero. The form of R ~ 
given in (17e) is particularly easy to calculate, but we note that dropping the 
projector P~ of  the Hermitian form of Eq. (17c) 

requires that one recall that R"  operates only on I~b~). 

In the above we have assumed that all (4~14~Y) = 3~. By the construction of an 
Hermitian operator R ~, orthonormality is guaranteed for each set {14~)}. When 
/x # ~, there is no such a priori guarantee unless set ~. and ~, transform as different 
irreducible representations of  the symmetry group. This is a restriction in many 
methods at present, but will not be satisfactory for work, for example, on transition 
metal complexes. 
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We consider a manifold of operators, where the closed-shell operator is specified 
first, R c, and for convenience open-shell operators R ~, R 2, etc., are arranged 
according to decreasing number of electronsin each shell. Then 

R~162162 <~TIC)=  8~ (lg) 

p c =  • 1q5~)(4,~1" 
k E c  

Similarly we want 

1 1 R114~ 1) = %l~b)), (~b,]4j) = ~ij (19a) 

and 

(~b) 1 ~br) = 0. (19b) 

Equation (19b) is guaranteed if 

(1 - p c ) l ~ ) )  = I~ ) ) .  (19c) 

Since ( 1 -  pc) is a projector onto the orthogonal complement of {14~)}, 

( l ' p c ) ( 1 - P C ) = ( 1 - P C ) ,  

and 

( 1  - P C ) R l ( l  - f ~ ) [ ~ b ) )  = (1  - pc)R~[~b)) = ( 1  - P ' ) % [ 6 ) )  

= O ) j [ ~ ) ) =  Rl[61).  (20a) 

Note that this guarantees that ( 1 - P C ) R 1 ( 1 -  PC)]~b~)= 0. (20b) 

Similarly, we constrain the remaining shells so that 

(1  - P~)(1 - P~)I4,~) = (1 - P~ - PC)14,~) = 14,~) (20c) 

(1 - P~ - P C ) R 2 ( 1  - p1  _ pc) l~2k)  = ~Ok[d~2) (20d) 

etc. This procedure defines the eigenvectors of each succesSive operator in the 
orthogonal complement of all those proceeding. 

Another way suggested would be to create the operators 

~ c  = n ~ R c n c  

~ 1  = p 1 R 1 p 1  

etc, with {P~} obtained from the previous SCF cycle. We note the similarity of  
this structure and 

R ~ = p ~ F ~ p  ~ 

obtained by setting all A ~ in Eq. (16) equal to zero. Such a procedure does not 
guarantee a minimum energy principle. 
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3. Single Operator formalism 

The most  general  s t ructure is that  o f  Eq. (20) with Ri defined as in Eq. (17e). 
Al though we will use this fo rmula t ion  for  the calculat ions which  follow, for  
comple teness  and  for  c o m p a r i s o n  with others,  we briefly pursue  a single opera to r  
formal ism.  We derive f rom Eq. (17e) 

{ F ~  - Y,[P"F~"PIX + P~FIX"P*'] + P~'FIx~'P~ P~'F~'Pix}lqb~)= ~ �9 

(21) 

Subtract ing (1 - Pix)F~ix(1 - P~)  f rom the ope ra to r  on the left side, which 
yields zero when  acting on I~b~), and  recall ing that  Fixix = F% we derive 

r'~l~) --- ~ -  FixPix + P~FIX + P ~ F ~ P  ~ - E [P "F~"PIx + PIXF~"P ~] ~b~) 

1 w,[~b~) e,[~b?). ( 2 2 )  
nix 

The ope ra to r  o f  Eq. (22) yields e~ when  opera t ing  on any 14~*), and zero when 
opera t ing  on any  I~b~), o~ # / ~ .  

Then  

_ - - E r  ~ 

Ix t l  

(23a) 

Incorpora t ing  the occupa t ion  numbers  n"  into a new Fock  o p e r a t o r / %  = F " /n i x  
gives 

p~ t*  tv 

- y~ ~ P g { F ~ [ ( n ~ / n ~ ) A  ~ - A~ �9 ] _ I ~ [ A  ~ - (n~/n~)A~,~]}p~ 
v / x  

(24) 

A 

/~ = Z ~  [(1 - P ) P ~ P ~  + PIXP~(1 - P)  + P ~ F ~ P  ~] 
~ n  

- 2 Y. P~{-F~[(n~/n~)A Ix~ - A ~Ix] - / 5 ~ [ A ~  - (nix/nV)A~ix]}P Ix, 

where  P - - - Z  P~. This equa t ion  has the same general  fo rm as ob ta ined  by 
Huz inaga  [16] or  Hi rao  [17]. Since rix only  gives non-zero  values when  opera t ing  
on an orbital  o f  the iz-th manifo ld ,  we have  

As discussed by Hirao ,  the obvious  choice of  ( n V / n ~ ) A  ~ = A ~Ix is not  satisfac- 
tory, as the constra int  o f  Eq. (12) is again  d r o p p e d  [17]. The funct ion of  F ~ is 
to act as a shift  o f  the off -block-diagonals  o f  a one Hami l ton i an  method .  
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4. Matrix formulation and the form of the Fock operator 

We expand Eq. (7) in terms of real spatial orbitals as 

E = 2 Z h i +  Y. ~ (2J 0 - K 0 )  i c l o s e d ; j c l o s e d  
i~zc i ~ c j ~ c  

1 
+ E E n~'hk +-~ E E E E nixn~(2aix~Jkt 

/ r#c  k~ix IX#c v # c  kcix l~v 

-- b~Km)  k open; I open 

+ ~ ~ Y, nix(2J~k -- K~k) i Closed; k open, (26) 
Ix#c icc k~t* 

with J~k = (ik[ ik), K i k  = (iklki),  h, = (ilhli). 
For the connection with conventional trace formulas: 

15 y. r r = Omhpq + � 8 9  �89 " " DpqG m - DpqOpq, (27) 
P,q P,q IX P,q 

with the density of shell/z given by 

IX IX /x O~q = Y~ C,pC,qn . (28a) 
i 

The total density Dprq is: 

= 2 (28b) 
IX 

each orbital [~b~) expanded as a linear combination of atomic orbitals 

I~,~> = E c,~lx.) (29) 
P 

and the matrix elements Gpq and Qp~q defined through 

G m = Y. [(pqlrs) - �89 (30a) 
r,s 

Q~q = y. [a~(pqlrs)  _ 1 ,. ~Br,(pslqr) ] (30b) 
r,s 

A~ -= 2 (1 - aixV)D~, and B~ -= 2 (1 - bix~)D~,. (30c) 
v # c  v # c  

The A and B matrices are special weighted density matrices. 

Expanding Eq. (27) term by term in the atomic orbital basis, Eq. (29) gives 
T IX IX v 

D p q h p q  = ~, X X n C i p f l q h p q  = 2 X h,  + X Y.. nixhk ( 3 1 a )  

p,q p,q Ix icix i~c Ix#c kEix 

�89 E Dp~Gpq = �89 E E ~ ~ n~'n~C~C~qCj~Cj~[(Pql rs) - �89 (31b) 
p,q p,q Ix, v i~l* j ~ v  

r,s 

-�89 E Y, Dp~qOp~ = -�89 E E E E E n~n~C~pCi~Cj~Cj~ (31c) 
p,q tx p,q tx v # c  iEtx j ~ v  

r,s 

x [(1 - a~) (pq[rs )  - �89 - bix~)(ps [qr)]. 
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These equations can be recognized as the terms in Eq. (26). Adding the orthonor- 
reality constraint with the Lagrangian multipliers A 0 and taking the derivatives 
of  this equation with respect to the expansion coefficients C~ leads to 

E n"[hpq + Gpq = Q~qJC~q = E E E CsqAoApq (32a) 
q.  q v j ~ v  

Q~q =- O. (32b) 

Equations (32) are the matrix form of  Eq. (9b) or (13) and Apq is the overlap 
between Xp and Xq. For convenience we redefine the operator F ~ so that its 
eigenvalues are conventional orbital energies. In matrix representation, F ~ is: 

F~q = hpq + Gpq - Q~q. (33) 

The presence of n~ in (32a) is the origin of  Eq. (15). Again, restricting all n~ -- n ~ 
Eq. (17e) now becomes 

n--- d ~ C~Rp~ =- ~p C~ F~q - ~ ~" [D~F~; + F,~Drq] (34a) 

= e , C ~ ,  

where the matrix element F~  is defined according to Eq. (17b) as: 

= (n /n )A Fpq+ ( 1 - A ) F p q  (34b) 

and from Eq. (27), after some algebra 

E = �89 OZhqp +�89 Y~ Dp'q(heq + Oqp - Q~ 
p,q  ,o. p ,q  \ 

1 ~ ~ ~ ) 
- E E --[DprFrq + F~ffDro] 

r v ~ t x  n 

: �89 E n~'( h, + ei). (35a) 

This follows since 

~r 1 v v / ~  /~v v E Dp~q E --[Dp,F,q + FvrDrq] = O. 
p,q  ~,~ lx n 

(35b) 

5. Detailed construction of the Fock operator 

A linear combination of determinants is constructed to represent a given spin 
and space symmetry. The function is normalized and the energy expectation 
evaluated. The energy must be of  the form of  Eq. (7); i.e. must not contain two 
electron terms other than (~Jl~J) or (/j Iji) [28]. A comparison is then made with 
the derived form and Eq. (26) to derive the values of a ~ and b ~.  There is often 
some arbitrariness in the selection of a ~'~ and b ~ values, as in certain cases one 
equation arises for two unknowns [25]. In such cases it is advantageous to choose 
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as many a ~ equal and as many corresponding b "~ equal. By reordering the 
operators, the matrices a and b can be placed in block form; i.e. 

t i  1 ~-1 -[--~-1 ~_ 1 
a =  1 b =  - 1  . 

2 3 

If  n ~ = n 2, this system can be reduced from three to two operators with coupling 
coefficients a = (1, 2, 2) and b = (-1,  3, 2) as evident from the form of Eq. (33) 
and Eq. (30). 

For example, consider the two electron triplet 

3~ = iclose d ~bl~b21 

E = (361H[3~,) = h, + h2 + J~2 - K12 d- E (closed). 

Comparison with Eq. (26) yields (since J~i = K, )  

(�89 11 - 1 b l ~ ) J l l  = 0 2a 11 = b 11 

(la22 _1 t~22~r 2a22 b 2z 
- -  4 U 1 . 1 2 2  ~ 0 

a12J12 = J12 a ~z = 1 

-�89 = - K 1 2  b 12 = 2. 

Then if a 11 and a 22 = 1, b 12 = 2 one open-shell operator is obtained. The 
corresponding singlet requires two one-electron open-shell operators. Several 
common cases are tabulated in Table 1. The coefficients a ~ and b "~ are a 
generalization of the "vector coupling coefficients" of Roothaan [13]. 

6. B r i l l o u i n ' s  t h e o r e m  

Following the generalized Brillouin's theorem of Levy and Berthier [26], we 
minimize the energy of a wavefunction constructed as 

~ o  = • dAChA, (36a) 

with 

Y. d~ = 1. (36b) 

We then create "singly excited functions" using particle/hole operators as: 

[~b) -- [(a~a,),~ + (a~-a,)~]l~0). (37) 

The particle/hole operators operate on each component determinant of ~o in 
turn, removing an electron from an occupied orbital ~bi and creating an electron 
in the empty orbital ~bb. Note that if orbital ~bi is empty or orbital ~bb is doubly 
occupied, these operators give zero. 

This particle/hole operator is a single electron operator. Thus, in terms of the 
Fock operators of the previous section 

(~olnl~/b) = 2(~b[lFCl~b~,> = 0 (38a) 
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which follows from Eq. (171"), where I~b~) is doubly occupied in ~o, 14~) is not 
occupied in ~o and if (4~l~b~) = 0. Similarly 

r C p ,  
( ' ~ 0 I H I ~ )  -- ( r  [4,k) = 0 (38b)  

< ' I 'o ln l '~L)  = (4 ,<IF  '~ - F q r / )  =- 0 (38c) 

which follows from Eq. (12), when 14~) and [~b[) are both open shell orbitals. 

Lastly, we examine 

( ' I ' o l H l ' ~ )  = (4 ,~ lF~16g)  = 0 (38d) 

which follows from Eqs. (9b) and (12), if (~b~l~b~) = 0. 

Equations (38a) and (38b) hold only if 14~b), virtual orbitals that are considered 
in the variational space, are orthogonal to those that are obtained as eigenfunctions 
of the set of operators {F~}. This is a condition fulfilled by Eq. (17c) and the 
procedure suggested by Eqs. (20). In the matrix representation of these equations 
discussed above, ]~bb) was chosen as the unoccupied orbitals that are obtained 
from the last open-shell operator diagonalized. They are orthogonal to all other 
orbitals through the projection operators of Eq. (20) and with other orbitals of 
the same operator through the diagonalization procedure itself. 

Equations (38) are the generalized "Brillouin conditions". These conditions 
refer to "single excitations" with the structure of Eq. (37), and not necessarily 
to proper spin adapted single excitations from the reference XIro. 

7. Koopmans' approximation 

Koopmans' approximation states that the negative of the orbital energies in a 
closed-shell SCF calculation are the ionization potentials of the system in the 
absence of orbital relaxation (29). That is, removing an electron from orbital ]~i) 
in ~o and recalculating the energy using the remaining orbitals of q~o yields 
E + --  E 0 = - e  i. 

Koopmans' approximation gives a good "feel" for a wave function and its 
components, and is a useful feature in examining the ground and excited states 
of atoms and molecules. Koopmans' approximation is not generally valid for 
open shell systems, where it would be particularly useful in determining the 
occupancy of orbitals in different shells. Indeed the construction of the projection 
operators in Eq. (20) requires the assignment of orbitals to shells and the usual 
aufbau principle is determined with the tacit assumption (sometimes incorrectly) 
of Koopmans' approximations. 

Using Eq. (35b), it is easy to show from Eq. (34a) that 

~'r = hi + Gi i  - Q ~  

= hi + ~, ~, n " [ J #  - ~Ko] 
t ,  j E v  

- Y~ Y, n~[(1 - a~)J~j - �89 - b ~ ) K o ] .  (39) 
v r  



360 W.D. Edwards and M. C. Zerner 

For a closed-shell molecular orbital, /~ = c and by our construction e7 obeys 
Koopmans '  approximation with an "average" exchange energy for each open- 
shell orbital since from Eq. (26) 

E+(c) - E o = -h~ - ~ (2J~j-  K o ) -  E E ng(2Jik- -  K,k) 
j ~ c  p ,~c  k c ~  

= - (h i  + Gii) = -eT. (40a) 

For a open-shell molecular orbital, again from Eq. (26) 

E + ( / ~ ) -  E0 = - h i -  E ( 2 J ~ -  Ko) - ~  Y~ ~ n~[2a~'~J~k -- b~Kik]  
j ~ c  v ~ c  k ~ v  

= - e ~  + ly ,  y, n~[a.~j~j _ �89 
v j C p  

= - e ~  - Ae~. (40b) 

The term Ae~ is a correction to the orbital energy required to approximate an 
ionization process. Ingeneral ,  Ae is not equal to zero. However, for some specific 
cases, a ~ nd b ~ are zero and the correction term vanishes, and Koopmans'  
theorem is obeyed for all orbitals. 

8. Summary 

In this paper we have developed a general open-shell restricted Hartree-Fock 
formulation that is capable of dealing with the most general case in which the 
energy can be written in terms of only one electron terms and Coulomb and 
exchange integrals (/Jl/J) and (ijlji). The solutions of the closed-shell and each  
previous open-shell are projected from each-shell in turn, allowing for an easy 
separation of  the orbitals into shells, and rapid convergence of the procedure. 

This paper has been written in response to many inquiries concerning open-shell 
"vector coupling coefficients". To calculate these coefficients, a and b, it is not 
necessary to go through the derivations of  this paper or of others, but only to 
follow the procedure of  Sect. 5, and only this if the case of interest is not found 
i n the  Table. 
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